Guide and Reference


Eigensystem Analysis

The eigensystem analysis subroutines are described in this chapter.


Overview of the Eigensystem Analysis Subroutines

The eigensystem analysis subroutines provide solutions to the algebraic eigensystem analysis problem Az = wz and the generalized eigensystem analysis problem Az = wBz ( Table 117). Many of the eigensystem analysis subroutines use the algorithms presented in Linear Algebra by Wilkinson and Reinsch [93] or use adaptations of EISPACK routines, as described in the EISPACK Guide Lecture Notes in Computer Science in reference [81] or in the EISPACK Guide Extension Lecture Notes in Computer Science in reference [55]. (EISPACK is available from the sources listed in reference [49].)

Table 117. List of Eigensystem Analysis Subroutines
Descriptive Name Short- Precision Subroutine Long- Precision Subroutine Page
Eigenvalues and, Optionally, All or Selected Eigenvectors of a General Matrix
SGEEV
CGEEV

DGEEV
ZGEEV

SGEEV, DGEEV, CGEEV, and ZGEEV--Eigenvalues and, Optionally, All or Selected Eigenvectors of a General Matrix
Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric Matrix or a Complex Hermitian Matrix
SSPEV
CHPEV

DSPEV
ZHPEV

SSPEV, DSPEV, CHPEV, and ZHPEV--Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric Matrix or a Complex Hermitian Matrix
Extreme Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric Matrix or a Complex Hermitian Matrix
SSPSV
CHPSV

DSPSV
ZHPSV

SSPSV, DSPSV, CHPSV, and ZHPSV--Extreme Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric Matrix or a Complex Hermitian Matrix
Eigenvalues and, Optionally, the Eigenvectors of a Generalized Real Eigensystem, Az=wBz, where A and B Are Real General Matrices SGEGV DGEGV SGEGV and DGEGV--Eigenvalues and, Optionally, the Eigenvectors of a Generalized Real Eigensystem, Az=wBz, where A and B Are Real General Matrices
Eigenvalues and, Optionally, the Eigenvectors of a Generalized Real Symmetric Eigensystem, Az=wBz, where A Is Real Symmetric and B Is Real Symmetric Positive Definite SSYGV DSYGV SSYGV and DSYGV--Eigenvalues and, Optionally, the Eigenvectors of a Generalized Real Symmetric Eigensystem, Az=wBz, where A Is Real Symmetric and B Is Real Symmetric Positive Definite


[ Top of Page | Previous Page | Next Page | Table of Contents | Index ]